(DP170103704 and DP180103003) and the National Health and

Medical Research Council through the Career Development Fel-

lowship (APP1143377). The authors declare no known competing

interest.

References

1. Tavassoli H et al (2018) Large-scale produc-

tion of stem cells utilizing microcarriers: a bio-

materials

engineering

perspective

from

academic research to commercialized products.

Biomaterials 181:333–346

2. Jossen V et al (2018) Manufacturing human

mesenchymal stem cells at clinical scale: process

and regulatory challenges. Appl Microbiol Bio-

technol 102(9):3981–3994

3. Zhang J et al (2016) Fundamentals and appli-

cations of inertial microfluidics: a review. Lab

Chip 16(1):10–34

4. Amini H, Lee W, Di Carlo D (2014) Inertial

microfluidic

physics.

Lab

Chip

14

(15):2739–2761

5. Moloudi R et al (2018) Inertial particle focus-

ing dynamics in a trapezoidal straight micro-

channel:

application

to

particle

filtration.

Microfluid Nanofluid 22(3):33

6. Di Carlo D et al (2007) Continuous inertial

focusing, ordering, and separation of particles

in microchannels. Proc Natl Acad Sci U S A

104(48):18892–18897

7. Tang W et al (2020) Channel innovations for

inertial

microfluidics.

Lab

Chip

20

(19):3485–3502

8. Moloudi R et al (2019) Scaled-up inertial

microfluidics:

retention

system

for

microcarrier-based suspension cultures. Bio-

technol J 14(5):1800674

9. Rafeie M et al (2016) Multiplexing slanted

spiral microchannels for ultra-fast blood plasma

separation. Lab Chip 16(15):2791–2802

10. Warkiani ME et al (2015) Membrane-less

microfiltration using inertial microfluidics. Sci

Rep 5:11018

11. Kwon T et al (2017) Microfluidic cell retention

device for perfusion of mammalian suspension

culture. Sci Rep 7(1):1–11

12. Moloudi R et al (2018) Inertial-based filtration

method for removal of microcarriers from mes-

enchymal stem cell suspensions. Sci Rep 8

(1):12481

13. Bazaz SR et al (2020) 3D printing of inertial

microfluidic devices. Sci Rep 10(1):1–14

14. Shrestha J et al (2019) A rapidly prototyped

lung-on-a-chip

model

using

3D-printed

molds. Organs-on-a-Chip 1:100001

15. Vasilescu SA et al (2020) 3D printing enables

the rapid prototyping of modular microfluidic

devices for particle conjugation. Appl Mater

Today 20:100726

266

Lin Ding et al.